(a) For the graph below, use Kruskal’s algorithm to find the MST. The number on each edge is the weight, and the letter is a unique label you should use in your answer to specify that edge. Provide the edges in the order they’d be inserted into the MST by Kruskal’s algorithm. Break any ties using the alphabetical label. Use the blanks below. You may not need all blanks. Give your answer in terms of the alphabetical labels, e.g. if Kruskal’s starts with the edge between vertices 3 and 4, you would write H in the first blank.

(b) Repeat part a, but using Prim’s algorithm, starting from vertex #3. As before, give your answer in the order added to the MST and in terms of the alphabetical labels. You may not need all of the blanks.
(c) For the graph below, give the order in which Dijkstra’s Algorithm would visit each vertex, starting from vertex A.

2 Conceptual MST and Shortest Path

Answer the following questions regarding MSTs and shortest path algorithms for a weighted, undirected graph. If the question is T/F and the statement is true, provide an explanation. If the statement is false, provide a counterexample.

(a) (T/F) If all edge weights are equal and positive, breadth-first search starting from node A will return the shortest path from a node A to a target node B.

(b) (T/F) If all edges have distinct weights, the shortest path between any two vertices is unique.

(c) (T/F) Adding a constant positive integer k to all edge weights will not affect any shortest path between vertices.
(d) Draw a weighted graph (could be directed or undirected) where Dijkstra’s would incorrectly give the shortest paths from some vertex.

(e) (T/F) Adding a constant positive integer k to all edge weights will not affect any MST of the graph.

(f) (T/F) Prim’s algorithm works even when there are negative edge weights in the graph.

(g) Why are disjoint sets used in Kruskal’s algorithm?

(h) (T/F) The last edge added to the MST by Prim’s algorithm is always the highest weight edge of the MST.
3 Shortest Path Algorithm Design

Design an efficient algorithm for the following problem: Given a weighted, undirected, and connected graph G where the weights of every edge in G are all integers between 1 and 10, and a starting vertex s in G, find the distance from s to every other vertex in the graph (where the distance between two vertices is defined as the weight of the shortest path connecting them).

Your algorithm must run asymptotically faster than Dijkstra’s.

Hint: What other shortest path algorithms have we learned? Could we possibly modify the graph to apply other SP algorithms?