
CS61B Spring 2016 Guerrilla Section 1 Worksheet

SOLUTIONS

Mike Aboody, Leo Colobong, Colby Guan, Laura Harker,
Jimmy Lee, Maurice Lee, Daniel Sochor, Megan Zhu

6 February 2016

Directions: In groups of 4-5, work on the following exercises. Do not proceed to the next exercise until
everyone in your group has the answer and understands why the answer is what it is. Of course, a topic
appearing on this worksheet does not imply that the topic will appear on the midterm, nor does a topic not
appearing on this worksheet imply that the topic will not appear on the midterm.

1 Grandpuppies!

Given the following block of code, answer the following questions.

1 public c lass Dog {

2 public String name;

3

4 public Dog(String name){

5 this .name = name;

6 }

7

8 public Dog giveBirth (){

9 return new Dog(this .name + "’s puppy");

10 }

11

12 public void bark(){

13 System.out.println(this .name + " barks!");

14 }

15

16 public stat ic void main(String args []) {

17 Dog[] myDogs = new Dog [3];

18 //Your code inserted here.
19 }

20 }

(a) Given the above code, what would you write in the main method to populate myDogs with 2 new Dogs
named Fido and Fiddle?
myDogs[0] = new Dog(Fido);
myDogs[1] = new Dog(Fiddle);

(b) How would you make Fido’s grand-child (the puppy of Fido’s puppy) bark, in only one line of code?
myDogs[0].giveBirth().giveBirth().bark();

(c) What would your answer to (b) output?
Fido’s puppy’s puppy barks!

1

CS61B Guerrilla Section 1 Worksheet

(d) What would happen if we tried myDogs[2].bark()?
NullPointerException

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 2

CS61B Guerrilla Section 1 Worksheet

2 Bugfixes

Fix the bugs in the Knapsack class below, so that main prints out ”Doge coin:100.45”
Solution:

1 c lass Knapsack {

2 public String thing;

3 public double amount; //Changed
4

5 public Knapsack (String str , double amount) {

6 this .thing = str; //Changed
7 this .amount = amount; //Changed
8 }

9

10 public Knapsack(String str) {

11 this (str , 100.45); //Changed
12 }

13

14 public stat ic void main (String [] args) {

15 Knapsack sack = new Knapsack("Doge coin");

16 System.out.println(sack.thing + " : " + sack.amount); //Changed
17 }

18 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 3

CS61B Guerrilla Section 1 Worksheet

3 Referencing Objects

Draw a box-and-pointer diagram for the execution of Swap.main. What is printed when you compile and
run this code?

Reminder: Java variables are simple containers that can hold either primitive values (e.g. int, double, char)
or references to objects. A reference variable is a 64-bit box that contains the ”address” in memory of an
instance of a class. 64-bit addresses are meaningless to humans, so we’ll represent them with arrows.
All method and constructor calls are pass-by-value, which means that Java copies bits from the caller’s vari-
able containers to the callee’s argument variable containers (regardless of whether these variables represent
primitive data types or references).

1 public c lass Point {

2 public int x;

3 public int y;

4

5 public Point(int x, int y) {

6 this .x = x;

7 this .y = y;

8 }

9 }

10

11 public c lass Swap {

12 stat ic void swapPoint(Point p) {

13 int temp = p.x;

14 p.x = p.y;

15 p.y = temp;

16 }

17

18 stat ic void swap(int a, int b) {

19 int temp = a;

20 a = b;

21 b = temp;

22 }

23

24 public stat ic void main(String args []) {

25 int x = 30;

26 int y = 19;

27 System.out.println("Original x: " + x);

28 System.out.println("Original y: " + y);

29 swap(x, y);

30 System.out.println("New x: " + x);

31 System.out.println("New y: " + y);

32 Point p = new Point(x, y);

33 System.out.println("Original x: " + p.x);

34 System.out.println("Original y: " + p.y);

35 swapPoint(p);

36 System.out.println("New x: " + p.x);

37 System.out.println("New y: " + p.y);

38

39 }

40

41 }

Original x: 30
Original y: 19
New x: 30
New y: 19

Spring 2016 4

CS61B Guerrilla Section 1 Worksheet

Original x: 30
Original y: 19
New x: 19
New y: 30

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 5

CS61B Guerrilla Section 1 Worksheet

4 Cat World Domination

Toby wants to rule the world with cats. To do this, he’s built a Cat class to start building his army. In his
army of cats, there is a family hierarchy where each cat may or may not have only one parent, and may or may
not have kitties (stored in the form of an ArrayList). Each cat that has a parent is also a kitty of that parent.

To speed up the world domination process, Toby builds a method called copyCat that, in addition to copying
the cat, also copies of that cat’s descendants. Toby tries to copy his cats initially, but realizes it doesn’t
work the way he expects it to. Here is his Cat class:

1 public c lass Cat {

2 private Cat parent;

3 private ArrayList <Cat > kitties;

4 private String name;

5

6 public Cat(Cat parent , String name) {

7 this .name = name;

8 this .kitties = new ArrayList <Cat >() ;

9 this .parent = parent;

10 }

11

12 public Cat copyCat () {

13 Cat copy = new Cat(this .parent , this .name);
14 for (int i = 0; i < this .kitties.size(); i += 1) {

15 copy.kitties.add(this .kitties.get(i).copyCat ());
16 }

17 return copy;

18 }

19 }

What’s wrong with his Cat class? Drawing a box and pointer diagram may help!
While the parent to child relationships are all correct, the copied child to parent relationships are not. In
other words, all of the copied kitties Arraylist<Cat>s are populated correctly, but the Cat parent is not
— it is never reassigned, and thus still points to the old parent.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 6

CS61B Guerrilla Section 1 Worksheet

5 Arrays

1 c lass Foo {

2 int x;

3 int y;

4 }

5 public c lass ArraysQuestion {

6 public stat ic void main(String [] args) {

7 int N = 3;

8 Foo[] xx = new Foo[N];

9 Foo[] yy = new Foo[N];

10 for (int i = 0; i < N; i++) {

11 Foo f = new Foo();

12 f.x = i; f.y = i;

13 xx[i] = f;

14 yy[i] = f;

15 }

16 for (int i = 0; i < N; i++) {

17 xx[i].y *= 2;

18 yy[i].x *= 3;

19 }

20 }

21 }

After executing the above block of code, what are the values of each Foo in xx and yy?
xx[0]: 0 0 yy[0]: 0 0

xx[1]: 3 2 yy[1]: 3 2

xx[2]: 6 4 yy[2]: 6 4

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 7

CS61B Guerrilla Section 1 Worksheet

6 Triangularize

Write triangularize, a method that takes in an array of IntLists R and a single IntList L, and breaks
L into smaller IntLists, storing them into R. The IntList at index k of R has at most k + 1 elements of
L, in order. Thus concatenating all of the IntLists in R together in order would give us L back. Assume
R is big enough to do this. For example, if the original L contains [1, 2, 3, 4, 5, 6, 7], and R has
6 elements, then on return R contains [[1], [2,3], [4,5,6], [7], [], []]. If R had only 2 elements,
then on return it would contain [[1], [2,3]]. triangularize may destroy the original contents of the
IntList objects in L, but does not create any new IntList objects. Note: Assume R’s items are all initially
null.
Solution:

1 public stat ic void triangularize(IntList [] R, IntList L) {

2 // One of many possible solutions
3 int i, k; // i: index into R, k: number of items in R[k]
4 i = 0; k = 0;

5 while (i < R.length) {

6 i f (k == 0) {

7 R[i] = L;

8 }

9 i f (L == null) {

10 i += 1;

11 k = 0;

12 }

13 else i f (k == i) {

14 IntList next = L.tail;

15 L.tail = null ;
16 L = next;

17 i += 1;

18 k = 0;

19 }

20 else {

21 L = L.tail;

22 k += 1;

23 }

24 }

25 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 8

CS61B Guerrilla Section 1 Worksheet

7 Mystery

What does the mystery function do? Hint: Draw box and pointers.

1 public c lass IntList {

2 public int head;

3 public IntList tail;

4

5 public IntList(int head0 , IntList tail0) {

6 head = head0; tail = tail0;

7 }

8

9 public stat ic IntList mystery(IntList L) {

10 i f (L == null || L.tail == null) {

11 return L;

12 } else {

13 IntList x = mystery(L.tail);

14 L.tail.tail = L;

15 L.tail = null ;
16 return x;

17 }

18 }

19

20 public String toString () {

21 String result = "";

22 IntList y = this ;
23 while (y != null) {

24 result = result + y.head + " ";

25 y = y.tail;

26 }

27 return result;

28 }

29

30 public stat ic void main(String [] args) {

31 IntList x = new IntList(2, new IntList(3, new IntList(4, new IntList(5,

null))));
32 System.out.println(x);

33 IntList y = mystery(x);

34 System.out.println(y);

35 }

36 }

It destructively reverses L, and returns the new head. In this case, running main would cause this output:
2 3 4 5
5 4 3 2

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 9

CS61B Guerrilla Section 1 Worksheet

8 Braid

Write braid, a method that takes in two IntDLists of equal length and interleaves the linked lists such that
they’re a circularly list, then returns the new start node. For example, given a = [1, 2, 3] and b = [4,

5, 6], it should return [1, 5, 3, 4, 2, 6].
Solution:

1 public stat ic IntDList braid(IntDList a, IntDList b) {

2 i f (a == null) {

3 return null ;
4 }

5 IntDList aStart = a;

6 IntDList bStart = b;

7 IntDList tempNext;

8 int count = 0;

9 while (a.next != null) {

10 tempNext = a.next;

11 a.next = b.next;

12 a.next.prev = a;

13 a = a.next;

14 b.next = tempNext;

15 b.next.prev = b;

16 b = b.next;

17 count ++;

18 }

19 a.next = bStart;

20 b.next = aStart;

21 bStart.prev = a;

22 aStart.prev = b;

23

24

25 return aStart;

26 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 10

CS61B Guerrilla Section 1 Worksheet

9 Sorting Zeros and Ones (bonus)

Write sortZerosOnes, a method that takes an Intlist of only 0s and 1s and sorts the nodes of the list,
and returns the new start node. Do not change any head values or create any new nodes. You can assume
that the list L passed in has only 0s or 1s.
Solution:

1 public stat ic IntList sortZerosOnes(IntList a) {

2 Intlist firstZero = null , lastZero = null , one = null , tail;

3 while(a != null) {

4 tail = a.tail;

5 i f (a.head == 0) {

6 a.tail = firstZero;

7 firstZero = a

8 i f (lastZero == null) {

9 lastZero = a;

10 }

11 }

12 else {

13 a.tail = one;

14 one = a;

15 }

16 a = tail;

17 }

18 i f (lastZero != null) { // handle case where there are no zeros
19 lastZero.tail = one;

20 return firstZero;

21 }

22 return one;

23 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2016 11

CS61B Guerrilla Section 1 Worksheet

10 2D Arrays (bonus)

(a) Write diagonalFlip, a method that takes a 2D array arr of size NxN and DESTRUCTIVELY flips arr
along the diagonal line from the left bottom to right top.
Solution:

1 public stat ic void diagonalFlip(int [][] arr){

2 int N = arr.length;

3 for (int i = N - 1; i >= 0; i--) {

4 for (int j = 0; j < N - i - 1; j++) {

5 int temp = arr[i][j];

6 arr[i][j] = arr[N - j - 1][N - i - 1];

7 arr[N - j - 1][N - i - 1] = temp;

8 }

9 }

10 }

(b) Write rotate, a method that takes a 2D array arr of size NxN and DESTRUCTIVELY rotates arr 90
degrees clockwise.
Solution:

1 public stat ic void rotate(int [][] arr) {

2 int N = arr.length;

3 for (int i = 0; i < N/2; i++) {

4 for (int j = i; i < N - j - 1; j++) {

5 int temp = arr[i][j];

6 arr[i][j] = arr[N-(j+1)][i];

7 arr[N-(j+1)][i] = arr[N-i-1][N-(j+1)];

8 arr[N-i-1][N-(j+1)] = arr[j][N-i-1];

9 arr[j][N-i-1] = temp;

10 }

11 }

12

13 }

Spring 2016 12

