1 Graph Representations

Write the graph above as an adjacency matrix, then as an adjacency list.

Matrix:

A B C D E F G <- end node
A 0 1 0 1 0 0 0
B 0 0 1 0 0 0 0
C 0 0 0 0 0 1 0
D 0 1 0 0 1 1 0
E 0 0 0 0 0 1 0
F 0 0 0 0 0 0 0
G 0 0 0 0 0 1 0
^ start node

List:

A: {B, D}
B: {C}
C: {F}
D: {B, E, F}
E: {F}
F: {}
G: {F}

2 DFS and BFS

Give the DFS preorder, DFS postorder, and BFS order of the graph starting from vertex A. Break ties alphabetically.

DFS preorder: ABCFDE
DFS postorder: FCBEDA
BFS: ABDCEF

3 Topological Sorting

Give a valid topological sort of the graph above. (Hint: Use the reverse postorder.)
One valid topological sort is GADEBCF. There are many others. In particular, G can go anywhere except after F, since it has no incoming edges and only one outgoing edge (to F).

4 Graph Algorithm Design: Bipartite Graphs

An undirected graph is said to be bipartite if all of its vertices can be divided into two disjoint sets U and V such that every edge connects an item in U to an item in V. For example, the graph on the left is bipartite, whereas on the graph on the left is not. Provide an algorithm which determines whether or not a graph is bipartite. What is the runtime of your algorithm?

To solve this problem, we simply run a special version of DFS or BFS from any vertex. This special version marks the start vertex with a U, then each of its children with a V, and each of their children with a U, and so forth. If any vertex already has a U and the visited vertex has a V (or vice-versa), then the graph is not bipartite.

If the graph is not connected, we repeat this process for each connected component.

If the algorithm completes, marking every vertex in the graph, then it is bipartite.

5 Extra for Experts: Shortest Directed Cycles

Provide an algorithm that finds the shortest directed cycle in a graph in $O(EV)$ time and $O(E)$ space, assuming $E > V$.

The key realization here is that the shortest directed cycle involving a particular source vertex is just some shortest path plus one edge back to s. Using this knowledge, we can create a subroutine $\text{shortestCycleFromSource}(s)$.

This subroutine first runs BFS on s, then checks every edge in the graph to see if it points at s. For each such edge originating at vertex v, it computes the cycle length by adding one to $\text{distTo}(x)$ (which was computed by BFS).

This subroutine takes $O(E + V)$ time because it is BFS. To find the shortest cycle in the entire graph, we simply call $\text{shortestCycleFromSource}(s)$ for each vertex, resulting in an $V * O(E + V) = O(EV + V^2)$ runtime. Since $E > V$, this is just $O(EV)$.

6 Extra for Experts: DFS Gone Wrong

Consider the following implementation of DFS, which contains a crucial error:
create the fringe, which is an empty Stack
 push the start vertex onto the fringe and mark it
 while the fringe is not empty:
 pop a vertex off the fringe and visit it
 for each neighbor of the vertex:
 if neighbor not marked:
 push neighbor onto the fringe
 mark neighbor

Give an example of a graph where this algorithm may not traverse in DFS order.