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Directions: In groups of 4-5, work on the following exercises. Do not proceed to the next exercise until
everyone in your group has the answer and understands why the answer is what it is. Of course, a topic
appearing on this worksheet does not imply that the topic will appear on the midterm, nor does a topic not
appearing on this worksheet imply that the topic will not appear on the midterm.

1 Asymptotic Analysis

Given the following code snippet, give a bound in Big-O for the runtime with respect to the length of the
String input.

1 public void mystery(String input) {

2 int n = input.length ();

3 for ( int i = 0; i < n; i++) {

4 for ( int j = 0; j < n; j++) {

5 i = i*2;

6 j = j*2;

7 }

8 }

9 }

O(log(n)): both i and j are doubled in the inner loop, so it takes log(n) time for both i and j to be
incremented to n

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
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2 Asymptotic Proofs

Given the following block of code, answer the following questions. Assume that n ≥ 1.

1 for ( int i = 1; i <= n; i++){

2 for ( int j = 1; j <= i; j = j*2){

3 System.out.println(i+j);

4 }

5 }

(a) Prove that the code runs in approximately O(log(n!)) time.
Hint: log(a · b) = log(a) + log(b) and n! = n(n− 1)(n− 2) . . . (2)(1)
The inner loop runs log(i) times for each i since we condition on 2j < i. Thus our total run time is
log(n) + log(n− 1) + . . . + 2 + 1 = log((n)(n− 1) . . . (2)(1)) = log(n!).

(b) We will now prove that log(n!) = Θ(n log(n)) in two steps:

(i) Prove that log(n!) = O(n log(n))
Hint: log(ab) = b log(a)
Upper bound each term of the factorial by n:

log(n!) = log((n)(n− 1)(n− 2) . . . (2)(1))

<= log(n · n · n · . . . · n) where we have n terms of n

= log(nn)

= n log(n)

(1)

(ii) Prove that log(n!) = Ω(n log(n))
We throw out the smaller half of the factorial, and lower bound the remaining terms by n

2 . We
know that the terms we threw out are ≥ 1, so throwing them out will only make our product
smaller.

log(n!) >= log((n)(n− 1)(n− 2) . . . (
n

2
))

>= log((
n

2
)(
n

2
) . . . (

n

2
))

= log((
n

2
)(
n

2
))

= (
n

2
) log(

n

2
)

(2)

So log(n!) >= (n
2 ) log(n

2 ) = Θ(n log(n)), which gives us that log(n!) = Θ(n log(n)).

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
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3 Count Down

(a) Give bounds in Big-Theta (Θ) notation for the runtimes of the following methods with respect to the
arguments passed in to the functions.

1 public int countDown () {

2 for ( int i = 100; i >= 0; i--) {

3 System.out.println(i);

4 }

5 }

6

7 public int countDown( int length) {

8 for ( int i = length; i>= 0; i--) {

9 System.out.println(i);

10 }

11 }

12

13 public int launchRockets( int numRockets) {

14 for ( int i = 0; i < numRockets; i++) {

15 countDown ();

16 }

17 for ( int i = 0; i < 100; i++) {

18 countDown(i);

19 }

20 }

countDown() is in Θ(1), since it does not depend on the size of any input.
countDown(int length) is in Θ(n)
launchRockets is in Θ(n) since it does numRockets constant-time calls. The second for loop does not
affect running time because it is constant

(b) What if we changed the second for loop (on line 17) in launchRockets(int numrockets) to:

17 for ( int i = 0; i < numRockets; i++) {

Would the running time of launchRocket(int numrockets) change, and if so, how?
Yes, it would change since the second for loop is not constant. The running time would become Θ(n2).
The first loop has n iterations with a constant number of operations in each iteration, which takes n
time. The second loop also has n iterations, and calls countDown(int length) once per iteration. This

gives us n + (n− 1) + . . . + 2 + 1 = n(n−1)
2 which gives Θ(n2).

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
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4 Data Structures (Stacks, Queues, Maps)

Using inheritance, define a class TrackedQueue that behaves like Queue except for an extra method,
maxSizeSoFar() which returns an int corresponding to the maximum number of elements in this queue
since it was constructed. Assume that the Queue class has the following methods:
void enqueue(Object obj)

int size()

1 public c lass TrackedQueue extends Queue {

2 private int maxSize;

3 public TrackedQueue (){

4 super();
5 maxSize = 0;

6 }

7 public int maxSizeSoFar (){

8 return maxSize;

9 }

10 public int enqueue(Object obj){

11 super.enqueue(obj);
12 i f (super.size() > maxSize){

13 maxSize = super.size();
14 }

15 }

16 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
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5 Queue Implementation

Consider the following implementations for a queue:

(a) A java.util.ArrayList with the front of the queue at the end of the list (the (n − 1)th element in a
queue of n elements) and the back of the queue at the start of the array (element 0). Assume that there
is room in the array to enqueue an element.

(b) A singly linked list with an additional reference to the last node in the list (the tail), with the front of
the queue last in the list and the back of the queue at the head of the list.

For each implementation, give estimates for the number of operations necessary to enqueue an element and
to dequeue an element given that the queue has n elements. You can answer either with Big-O notation or
by saying that the enqueue/dequeue takes “time proportional to X” for some X. Provide a brief explanation
for your answers.
Implementation (a)

1. enqueue O(n): We have to shift every element over by one in order to make room at index 0 for the new
element to enqueue.

2. dequeue O(1): We return the element at index n− 1 and set that location to null.

Implementation (b)

1. enqueue O(1): We make a new node to add to the beginning of our list. We make this new node point
to the head, and change the head pointer to point to this new node.

2. dequeue O(n): We return the element in the tail node. We also have to iterate through the entire list
starting at the head until we read the node right before tail, set its tail to null, and update the tail
pointer to point to this node.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
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6 ExpandableSet

Using inheritance, define a class ExpandableSet that behaves like Set (see below) except that when insert

is called with a value to be inserted larger than the Set can currently hold, the Set doubles in size until the
value can be added. ExpandableSet should have a no argument constructor that makes the initialize size of
the Set to be 1.

1 /∗∗
2 ∗ Represent a set of nonnegative ints from 0 to maxElement−1
3 ∗ for some initially specified maxElement.
4 ∗ contains[k] is true if k is in this set, false otherwise.
5 ∗/
6 public c lass Set {

7 protected boolean[] contains;

8 public Set( int maxElement) { //Initialize a set of ints from 0 to maxElement−1
9 contains = new boolean[maxElement ];

10 }

11 public void insert( int k) {

12 contains[k] = true;
13 }

14 public void remove( int k) {

15 contains[k] = f a l se ;
16 }

17 public boolean member( int k) {

18 return contains[k];

19 }

20 }

Solution:

1 public c lass ExpandableSet extends Set {

2 public ExpandableSet () {

3 super(1);
4 }

5

6 public void insert( int k) {

7 i f (k > contains.length) {

8 int origSize = contains.length;

9 int newSize = origSize * 2;

10 while (newSize <= k) {

11 newSize = newSize * 2;

12 }

13

14 boolean[] biggerVersion = new boolean[newSize ];
15 for ( int i = 0; i < origSize; i++) {

16 biggerVersion[i] = contains[i];

17 }

18 contains = biggerVersion;

19 }

20 super.insert(k);
21 }

22 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!
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7 Trees (Extra for Experts)

(a) Draw a full binary tree that has a preorder of C, T, U,W,X, S,A, Z,O and a postorder of W,X,U, S, T, Z,O,A,C.
Each node should contain exactly one letter.

(b) What is the inorder of this tree?
W,U,X, T, S, C, Z,A,O
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