CS 61B Discussion 2 Spring 2015

1 Practice with Linked Lists

Draw a box and pointer diagram to represent the IntLists after each statement.

IntList L = new IntList (4, null);
L = new IntList (3, L);

L = new IntList (2, L);

L = new IntList (1, L);

IntList M = L.tail;

IntList N = new IntList (6, null);
N = new IntList (5, N);

M=l I e Y " R S°

N.tail.tail = N;
M.tail.tail.tail = N.tail;
L

L

_ =
- o

.tail.tail = L.tail.tail.tail;
= M.tail;

LS}

2 Squaring a List

Write the following methods to destructively and non-destructively square a linked list.

/++ Destructively squares each element of the given IntList L.
* Don’t use ’“new’; modify the original IntList.
* Should be written iteratively. #*/
public static IntList SquareDestructive (IntList L) {

CS 61B, Spring 2015, Discussion 2 1

/** Non—-destructively squares each element of the given IntList L.
* Don’t modify the given IntList.

* Should be written recursively*/
public static IntList SquareNonDestructive (IntList L) {

Bonus for bosses: Write SquareDestructive recursively. Write SquareNonDestructive

iteratively.

3 Reversing Linked Lists

/*% Takes in an IntList and non-destructively returns an IntList whose

elements have been reversed.*/
public static IntList reverseNonDestructive (IntList 1lst) {

/%% Bonus for bosses: Write reverseDestructive, which takes in an IntList
and destructively returns the same IntList with reversed elements.

You should not use ’"new’.x/
public static void reverseDestructive (IntList L) {

CS 61B, Spring 2015, Discussion 2

